
Future Scope
Upto now we do not have microstructure in the model, which are the most important features in a material.
We will do this in Phase field formalism. Following are the salient features of Phase field formalism:

• It is a material modeling approach at continuum scale using two types of field variables: conserved and
non-conserved.

• It is based on the idea of D
¯

iffuse Interface(finite thickness, smooth variation of fields, no explicit trackn-
ing of interface).

• It involves simultaneous solution of C
¯
ahn-Hilliard and A

¯
llen-Cahn equations coupled by the free energy

of system:

∂Ci(r, t)

∂t
= ∇ ·

∑
j

Lij∇
( δF

δCj(r, t)

)
Cahn-Hilliard

∂ηp(r, t)

∂t
= −Lpq

δF

δηq(r, t)
Allen-Cahn

To get L (chemical mobility), we will use Onsager formulation, which relates fluxes of a species to different
driving forces present in the system. In crystalline solids,

Ji = −
n∑

j=1

Lij∇µj = −
n∑

k=1

n∑
j=1

Lij
∂µj

∂Ck
∇Ck

Comparing with generalized Fick’s law, Ji = −
∑n

k=1 Dik∇Ck, we get: Dik =
∑

j Lij
∂µj

∂Ck
⇒ We need

to solve D = LQ, Q = ∂2F
∂Cj∂Ck

to get L.

Results
A single cascade is applied at the center of the domain. We see the evolution of various fields:
The diffusivities in the model are related to each other as:
DAA = D(AA → AB) > DBB = D(BB → AB) > DAB > D(AB → BB) > DAv > DBv. Evolution
of all fields at temperature 900K is given below:
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Figure 3: Vacancy(left most), A (2nd), B (3rd), AA interstitial(4th), BB interstitial (bottom left), AB
interstitial (bottom right)

Model
We have 6 reaction-diffusion equations to solve to see the evolution of each concentration field under irra-
diation. A typical reaction-diffusion equation has the following form:

∂Cj

∂t
= −∇ · Jj + Reactions + Source + Recombination

where, Jj(j = A, B, V, AA, BB, AB) is defined as above.
For example, the evolution of AA dumb-bell interstitial is given by following equation:

∂CAA

∂t
= ∇ ·

[
DAA(CA∇CAA − CAA∇CA) +

1

2
D(AA → AB)(CB∇CAA − CAA∇CB)

+
1

2
D(AB → AA)(CA∇CAB − CAB∇CA)

]
−

[
K1AACA + K1(AA → AB)CB

+K1vACA + K1vBCB

]
CAACv −K2(AA → AB)CAACB + K2(AB → AA)CABCA

+Source

We have applied source term using a core-shell model. It is applied at random in space but at a known time:
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Figure 2: Cascade line profile: Vacancy(left most), AA interstitial (2nd), BB interstitial (3rd) and AB
interstitial(4th)

Non-dimensionalization
To avoid dealing with intrinsic length and time scales, the reaction-diffusion equations have been non-
dimensionalized by defining x → lx̃ ⇒ ∂

∂x →
1
l

∂
∂x̃ and t → τ t̃, τ = 1

Kmax
and l =

√
Dmax
Kmax

, where, K is
reaction rate constant and D is the diffusivity.

Numerical Scheme
We solve the equations simultaneously in 2D using periodic boundary conditions. Keeping in mind the CFL
condition

(
∆t

(∆x)2
< C

)
, we used Trapezoidal Method (improved Euler, O(2)) for marching along time and

centered finite difference (O(2)) for approximating ∇2.

Theory
The flux of all the species consist of following:

•Vacancies: Vacancy flux due to exchange of vacancies with either A or B atoms by vacancy mechanism
is:

Jv = −(Jv
A + Jv

B) = (DAvCv∇CA −DAvCA∇Cv + DBvCv∇CB −DBvCB∇Cv)

= [(DAv∇CA + DBv∇CB)Cv − (DAvCA + DBvCB)∇Cv]

where, Dξv = d2 ν0
ξv exp(−Em

ξv/kT ), ξ = A, B; d = distance between two lattice sites, ν0 = vibration
factor, Em = migration energy.

•Dumb-bell interstitials: Flux of dumb-bells due to Interstitialcy mechanism is calculated by consid-
ering following transitions (e.g. for AA dumb-bell):

JAA = −DAA(CA∇CAA − CAA∇CA)− 1

2
D(AA → AB)(CB∇CAA − CAA∇CB)

−1

2
D(AB → AA)(CA∇CAB − CAB∇CA)

Similarly, fluxes of BB and AB dumb-bells can be obtained.

•A and B atom flux: Flux of alloying elements will depend on both vacancy and interstitialcy mecha-
nisms:

JA = Jv
A + JI

A = Jv
A︸︷︷︸

vac.mech.

− [JAA + JB
AB]︸ ︷︷ ︸

interstitialcy

JB = Jv
B + JI

B = Jv
B︸︷︷︸

vac.mech.

− [JBB + JA
AB]︸ ︷︷ ︸

interstitialcy

JB
AB = flux of AB dumb-bell when B atom jumps leaving behind A atom on the lattice;

JA
AB = flux of AB dumb-bell when A atom jumps leaving behind B atom on the lattice.

Similarly, we can derive reactions which bring about the change in the concentration of all the species
locally(flux-less). For example, the change in AA dumb-bell concentration can be brought about by the
following reactions:

ReactionsAA = −K2(AA → AB)CAACB + K2(AB → AA)CACAB

where, K2(AA → AB) = reaction rate coeffecient = f2ν
0
AAexp(−Ec(AA → AB)/kT ), f2 = geometric

factor, Ec(AA → AB) = conversion energy from AA to AB dumb-bell.

Introduction
In the present system we have 6 species: A, B atoms, vacancies, AA, BB, AB dumb-bell interstitials. The
material transport takes place by two diffusion mechanisms: Vacancy and interstitialcy mechanisms. In
vacancy diffusion, an atom , hops on the lattice if a vacancy is present in its nearest neighbour. Interstitialcy
mechanism, on the other hand, takes place when one of the atoms in the dumb-bell moves to a nearest
neighbour atom and forms a dumb-bell there:

Figure 1: Dumb-bell interstitials in BCC(left most), FCC(2nd), Jump of dumb-bells, BCC(3rd) and
FCC(4th)

In order to study redistribution of species in the alloy, correct kinetics has to be understood. This require-
ment necessitates the derivation of flux for each species in the system using vacancy and interstitialcy mech-
anism. Once kinetics of each species is established, we will be able to write reaction-diffusion equation, in
the absence of sinks as:

∂Cj

∂t
= −∇ · Jj + Reactions + Source + Recombination

where, Jj = −
∑n

k=1 Djk∇Ck.

Abstract
We studied irradiation-induced material redistribution in concentrated binary alloys, AB. When a material
is irradiated, Frenkel pairs (vacancies and interstitials) are produced in concentrations much more above
their thermal concentrations. Depending upon the crystal structure and size of the alloying elements, various
defect configurations are formed. It has been seen that, if the solute size is such that they can fit in the
interstices (C, H, Boron, etc), the mobile defect configurations are vacancies and interstitials. But, if the
size of the solute is equal to bigger than the solvent atoms, formation of dumb-bell interstitial configurations
is observed (FCC, BCC). In present study, we have considered a FCC binary alloy, AB, in which the size
of B is almost equal to A. Therefore, we may have vacancies, AA, BB, AB (dumb-bells) as mobile defect
configurations. In the presence of defect sinks, the defect move towards them resulting in depletion of
faster diffusing alloying species and enrichment of slower diffusing species: Inverse Kirkendall Effect.
This causes segregation of alloying elements near defect sinks, which may deteriorate various material
properties. In the absence of defect sinks, we can see redistribution of alloying elements as a result of
irradiation. Present study is done to create a conceptual framework for the actual problem: Radiation-
induced microstructural and microchemical changes in concentrated binary alloys.
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