Continuous and Discontinuous Finite Element Methods

Abstract ‘

In contrast to classical partial differential equation ralsgthe recently devel-
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Numerical Experiments

oped peridynamic nonlocal continuum model for solid meatsrs an integro- e Smooth Solution Simulation:

differential equation that does not involve spatial ddnes of the displacement
field. As a result, the peridynamic model admits solutiongntajump discon-

tinuities so that it has been successfully applied to fr@cproblems. Based on
a variational formulation, continuous and discontinuowsetkin finite element

methods are developed for the peridynamic model. Discoatia discretizations
are conforming for the model without the need to account ioxe$ across ele-

ment edges. Through a series of simple, one-dimensiongbg@monal experi-
ments, we investigate the convergence behavior of the fgti@ent approxima-

tions and compare the results with theoretical estimates.

The Peridynamics Model ‘

« T he general bond-based model
The equation of motion at any poixtat timet Is given by:

pU(X,t) = fo(u(x’, t) —u(x,t), X — X)dVi + b(X, t) (1)

wherep — the mass density function,
u — the displacement vector field,
H, — the neighborhood of with radiuso,

b — the prescribed body force density field,
f — the pairwise function represents the interaction betweengbes.

¢ A linearized peridynamics model for proportional microelastic materials
IS given by the integro-differential equation
3 B X —X)® X —x),
1) = [ 5 5 X ) — U D) DX, 1) (2)
wherec denotes a constant that depends not only on the materialdaubn the
space dimension. In one dimensions 1;;’5 wherek denotes the bulk modulus.

Let p = 1 andk = 5/18, the steady-state, one-dimensional model setting for
which (2), along with a “boundary” condition, reduces to

(1 x+5u( ) U( ) /
ﬁ4% ‘x_f|d_ — b(z), €9 3

\ u(x)=g(x), x€Tl
where, Q= (a.8), @ =(a—54+6), T=0\Q=|a—60a]U[3 5+

Well-Posedness of the Variational Probletb

Let S(V) denote a Banach space, such thatQY?') c S(). Define space
S¢(Y) = {u(x) € S() | u(x) = g(x)a.e. on'} and the subspacs({2) =
{v(z) € S() | v(xr)=00nI}. Define

d=horizon

/'

T+0
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and the “dual” spachg_{b( ) b))+ < oo} where,
6% [PD dx
lll, = sup I LDT o g ),
vE S A0 vl]]

Then the variational problem has the following form: Givgn) € L*(T") and
b(z) € S§, seeku € S, such that

Alu,v) = F(v), Vv eS. (4)
By Lax-Milgram Theorem, the variational problem (4) has ague solution and,
moreover, those solutions satisfy:

[l [] < [11B]]]+ (5)

0 proportional toh o fixed, independent of
FE Space Error(L?) Error(L>) Error(H"Y)| Error(L?) = Error(L>) Error(H")
CL O(h?) | O(h?) O(h) O(h?) O(h?) O(h)
DC O(1) O(1) - O(h),(6 > h)|O(h),(6 > h) -
DL O(h?) | O(h?) O(h) O(h?) O(h?) O(h)

e Discontinuous Solution Simulation:

Discontinuous Solution for simulation Corresponding Forcing Function (0=0.3)

u(x)=x2

b(x)

u(x)

u(x)=x

—Grid points coincides with points of discontinuity

0 proportional toh | ¢ fixed, independent of
FE Space Error(L?) Error(L>®) Error(L?) | Error(L>)
CL O(R'?) | O(RY?) |  O(h'/?) O(h'/?)
DC O(1) O(1) O(h),(6 > h) O(h),(6 > h)
DL O(h?) O(h?) O(h?) O(h?)

—No grid point located at discontinuous point

L* & L~ Errors of DL Approximation L2 & L* Errors (Dis. Interval omitted) of DL Approximation

Slope=1/2
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—A local grid refinement approach that recovers full accuracy
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L% & L Errors of DL Approximation with Adaptive Mesh L2 & L Errors (Dis. Interval omitted) of DL Appr. with Adap. Mesf
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Future Works |

e Complete, rigorous analyses of errors and convergence aaue of adaptive
grid refinement strategies.

e FEM Implementation in 2-3 dimensions and for nonlinear pgois.

e Implementation for stochastic PD models



